147 research outputs found

    The measurement of the anomalous magnetic moment of the muon at fermilab

    Get PDF
    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status

    Data acquisition system for the MuLan muon lifetime experiment

    Full text link
    We describe the data acquisition system for the MuLan muon lifetime experiment at Paul Scherrer Institute. The system was designed to record muon decays at rates up to 1 MHz and acquire data at rates up to 60 MB/sec. The system employed a parallel network of dual-processor machines and repeating acquisition cycles of deadtime-free time segments in order to reach the design goals. The system incorporated a versatile scheme for control and diagnostics and a custom web interface for monitoring experimental conditions.Comment: 19 pages, 8 figures, submitted to Nuclear Instruments and Methods

    New results on the hadronic vacuum polarization to the muon g-2

    Full text link
    Results on the lowest-order hadronic vacuum polarization contribution to the muon magnetic anomaly are presented. They are based on the latest published experimental data used as input to the dispersion integral. Thus recent results on tau to nutau pi pi0 decays from Belle and on e+ e- annihilation to pi+ pi- from BABAR and KLOE are included. The new data, together with improved isospin-breaking corrections for tau decays, result into a much better consistency among the different results. A discrepancy between the Standard Model prediction and the direct g-2 measurement is found at the level of 3 sigma.Comment: proceedings of the PhiPsi09 conference, Oct. 13-16, 2009, Beijing, Chin

    Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

    Get PDF
    We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let

    Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm

    Full text link
    The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement of the negative muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the first uncertainty is statistical and the second is sytematic, is consistend with previous measurements of the anomaly for the positive and negative muon. The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10} (0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to reflect referee comments. Text further revised to reflect additional referee comments and a corrected Fig. 3 replaces the older versio

    Implementation of chamber misalignments and deformations in the ATLAS muon spectrometer simulation

    Full text link
    "The implementation of run-time dependent corrections for alignment and distortions in the detector description of the ATLAS Muon Spectrometer is discussed, along with the strategies for studying such effects in dedicated simulations."http://deepblue.lib.umich.edu/bitstream/2027.42/64214/1/jpconf8_119_032010.pd

    Measurement of the Pion Form Factor in the Energy Range 1.04-1.38 GeV with the CMD-2 Detector

    Full text link
    The cross section for the process e+e−→π+π−e^+e^-\to\pi^+\pi^- is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 e+e−e^+e^- events, 82000 μ+μ−\mu^+\mu^- events, and 33000 π+π−\pi^+\pi^- events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.Comment: 5 pages, 2 figure
    • …
    corecore